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Introduction

I Modeling and simulation are central to modern science

I There is a need to develop new and better numerical
approaches

I For instance the Cellular Automata (CA) and Lattice
Boltzmann (LB) approaches have been successful alternatives
to standard computational methods



CA and LB methods

I a discrete mathematical abstraction of reality

I The macroscopic behavior depends very little on the details of
the microscopic interactions.

I Only “symmetries” or conservation laws survive.

I Consider a fictitious world, particularly easy to simulate on a
(parallel) computer with the desired macroscopic behavior.



From hydrodynamics PDE

∂tu + (u · ∇)u = −1

ρ
∇p + ν∇2u

phenomena → PDE→ discretization → computer solution



...to virtual fluids

phenomena → computer model

Collision Propagation



LB simulations

I Simple, flexible, intuitive, efficient
I Palabos software 1 (Jonas Latt)

I Free, Open source software
(http://www.lbmethod.org/palabos)

I Python interface or full C++
I complex multi-physics, complex data-structures
I Offer a wide range of models, boundary conditions, dynamics
I Can handle large scale parallel simulations
I Automatic high performance parallelization. Scales well up to

thousands of cores

1. http://www.lbmethods.org/palabos

http://www.lbmethod.org/palabos
http://www.lbmethods.org/palabos


Examples of LB simulations



Multiscale, multiscience modeling framework

I Propose a modeling and simulation framework for multiscale,
multisciences complex systems

I Theorectical concepts : Complex Automata (CxA)
I Software environment : The MUSCLE library
I Validation application : In-stent restenosis
I A Multiscale Modeling Language : MML

I The follow up : the MAPPER EU project
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The COAST Project

I A. Hoekstra, A. Caiazzo, E. Lorenz, U. Amsterdam
(Netherlands)

I R. Hose, P. Lawford, D. Evans, J. Gunn, U. Sheffield (UK)

I B. Chopard, J-L. Falcone, B. Stahl, U. Geneva (Switzerland)

I M. Krafczyk, Y. Hegwald, TU Brauschweig (Germany)

I J. Bernsdorf, D. Wang, NEC (Germany)

I Joris Borgdorf, U. Amsterdam (Netherlands)



Motivations

I Very few methodological papers in the literature.

I Multiscale strategies are usually entangled with applications.

I Can we develop a framework that help the design and
deployment of complex multiscale-multiscience applications ?
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From a multiscale systems to many single-scale systems :

Let us consider a system of size L evolving over a time T .
Computation with space and time discretization ∆x and ∆t

Resolved spatial scales : ∆x < ξ < L and
Resolved temporal scales : ∆t < τ < T

Scale Map
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From a multiscale systems to many single-scale systems :

Scale Separation Map

I Submodels

I Smart Conduits



Complex Automata (CxA)

I A CxA is a set of coupled (single-scale) submodels

I Lattice Boltzmann (LB), cellular automata (CA) models
and Finite Difference (FD) schemes, and also particle
models, ...

I They can be decribed with the same generic execution loop

I Submodels should not know about the rest of the system :
they are autonomous components

I Only the smart conduits know about the properties of the
submodels they connect.

A. G. Hoekstra, A. Caiazzo, E. Lorenz, J.-L. Falcone, and B. Chopard. Complex Automata : multi-scale Modeling

with coupled Cellular Automata, in Modelling Complex Systems by Cellular Automata, chapter 3, Springer Verlag,

2010.



I. Relation between the scales

I The Scale Separation Map (SSM) specifies the relation
between the sub-models in five regions :.

I There is more than the standard micro-macro relation and
more than than the “bi-scale” modeling

time scales
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II. Relation between computational domains

single-Domain (sD)

CA1

CA
2

(Example : advection-diffusion, suspension flows)

multi-Domain (mD)

model 1Dh(x)



III Generic“Submodel Execution Loop”

I finit is for initialization

I S is for one iteration of the
Solver

I B is to specify the
Boundaries

I Oi is for Intermediate
Observation

I Of is for Final Observation

submodel

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)



IV. Coupling Templates

I One has several operators in the submodel execution loop

I Oi , Of as origin

I finit , B and S as possible destinations

submodel 1 submodel 2
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while(not stop)
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Example : Coral growth

Coral grows due to nutrient brought by water flow



Coupling Speedup : Coral growth

Fluid is computed for

Tf

∆tf

Tc

∆tc
iterations instead of

Tc

∆tf

Speedup :

S =
∆tc

Tf
>> 1



Classification of problems

I relation in the Scale Separation Map

I single-Domain (sD) or multi-Domain (mD) relation

I coupling templates

overlap separation

o
v

e
rl

a
p

s
e

p
a

ra
ti

o
n

TIME

S
P

A
C

E

single domain

single domain

single domain

single domain

multi domain

multi domain

multi domain

multi domain

snow transport
advection-diffusion

...

Fluid-Structure
Grid transition

...

Forest-Savannah-Fire
...

Coral Growth
...

Algae-Water
...

Wave propagation
...

Bio-Physics
Tissue-Fluid

Suspension

O_i  to  S O_i  to  B O_i  to  f_init
O_f  to  B

O_i  to  f_init
O_f  to  S

O_i  to  S O_i  to  B

O_i  to  f_init
O_f  to  B

O_i  to  f_init
O_f  to  S



Relation between the scales separation and the coupling
templates

We consider two submodels, X and Y with single-domain (sD)
relation

name coupling temporal scale relation

interact OX
i → SY overlap

call OX
i → f Y

init X larger than Y
realease OY

f → SX Y smaller than X
dispatch OX

f → f Y
init any

When the relation between computational domains is
multi-domain, change S → B

Thus, the relation in the SSM determines the workflow



CxA Execution Model

submodel 1 submodel 2

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

I Submodels are autonomous processes
I Asynchronous communication through the conduits :

I Data is written to the conduit as soon as ready.
I Submodels read the data they need from the conduits (wait if

needed).

I Only local interactions are necessary : parallelization is
possible and natural

I Propagation of the termination condition



Send-Receive through the conduits

Example of the Coral submodel :

while not EndConditions

DomainConduit.send(D)

f := B(f)

velocityMap := VelocityConduit.receive()

f := S(f,velocityMap)

end

DomainConduit.stop()

myStop()



The COAST software environment : MUSCLE

I Jade (Java Agent based lightweight middleware) as a platform
to build the coupling software.

I Allows us to couple submodels (and legacy codes in C,
Fortran).

I A “Jade coordinator” is used to setup the system then goes
away,

I Low overhead.

I Predefined parametrized conduits

I Public release in Jan. 2009 2

2. http ://muscle.berlios.de



Can we do math with this approach ?



Mathematical formulation of couplings

CxA operators P and C can be used to express coupling strategies

I Time splitting

I Coarse graining

I Amplification

I ...

and estimate errors



Time splitting

Assume we have a sD problem with the following SEL

P∆tC∆t = P∆tC
(1)
∆t C

(2)
∆t

Then if C
(1)
∆t acts at a longer time scale than C

(2)
∆t we may want to

approximate

[P∆tC∆t ]M ≈ PM∆tC
(1)
M∆t [C

(2)
∆t ]M



Coarse graining

This strategy consists in expressing a sD problem as

[P∆xC∆x ]n ≈ Γ−1[P2∆xC2∆x ]n/2Γ

where Γ is a projection operator (implemented in the smart
conduit)



Amplification

We consider a process acting at low intensity but for a long time,
in a time periodic environment. For instance a growth process in a
pulsatile flow.
We have two coupled (mD) processes which are iterated n >> 1
times

[P(1)C (1)]n and [P(2)C (2)(k)]n

where k expresses the intensity of process C (2).
If the period of process C (1) is m << n, we can approximate the
above evolution as

[P(1)C (1)]m and [P(2)C (2)(k ′)]m

with k ′ = (n/m)k, for a linear process.



Reaction-Diffusion with time splitting

Diffusion Reaction

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

∂tρ = d∂xxρ+ κ(ρλ − ρ), (1)

We assume a fast reaction i.e. ‖κ‖ � ‖d‖ (in some units).



The LB model in CxA language

f (t + ∆tR) = P[I + D(τR) + R(κ)]f (t) (2)

D(τR) the diffusion collision operator at scale ∆tR , R(κ) the
reaction collision operator, I , the identity and P the propagation.
It can be time-split as

f (t + ∆tD) = P[I + D(τD)][I + R(κ)]∆tD/∆tR f (t) (3)

The error E of this time splitting can be computed analytically
A. Caiazzo, J-L. Falcone, B. Chopard and A. G. Hoekstra, Asymptotic analysis of Complex Automata models for

reaction-diffusion systems, Applied Numerical Mathematics 59 pp. 2023–2034 (2009)



Temporal scales

The time scales are such that

∆tR < τR = 1/κ� ∆tD < τD = 1/(λ2d)

thus, the actual scale separation is

σ =
τD

τR
=

κ

λ2d

whereas, the enforced scale separation is

M =
∆tD

∆tR



Scales separation

logM = log ∆tD − log ∆tR log σ = log τD − log τr

log(time-scales)

spatial scales

R D

logτ
D

logτ
R

log∆
R

log∆
D

logΤ
D

∆
x

L
x

log M

log σ



Time-splitting error versus scale separation



Biomedical application : in-stent restenosis

I Coronary heart disease (CHD)
remains the most common cause of
death in the UK, being responsible
for approximately 105,000 deaths
in 2004 (BHF Stats, 2006).

I In 2005, 94% of 70,142 UK
procedures involved the deployment
of a stent (BCIS Stats, 2006).



Restenosis : the full Scale Separation Map



Restenosis : Scale Separation Map

I A 3-submodel simplification (time separation is achieved)

D Evans, PV Lawford, J Gunn, D Walker, DR Hose, RH Smallwood, B Chopard, M Krafczyk, J Bernsdorf, A

Hoekstra. The Application of Multi-Scale Modelling to the Process of Development and Prevention of Stenosis in a

Stented Coronary Artery. Phil. Trans. R. Soc. A 366, pp. 3343–3360, 2008



Wrapping things together in the software environement

Runs on a distributed infrastructure (MAPPER project) more than
one output.



3D model



MML : a Multiscale Modeling Language

I the SSM turned out to be very powerful to design applications

I Formalize the CxA ideas into a language : high level
representation of a complex multiscale application

I Allows scientists with different backgrounds and geographical
locations to better co-develop a multiscale application

I Provide blueprints of a complex multiscale application that
can be further augmented by other groups

I Standard for publication

J-L Falcone, B. Chopard and A. Hoekstra, MML : towards a Multiscale Modeling Language,

Procedia Computer Science 1 :11, 819-826, 2010



Main ingredients

I Sub-models

I Spatial and temporal scales

I Computational domain
relation

I Coupling templates

I Conduits

We want to represent these features on a descriptive language



xMML

I XML-like language

I Easy grammar for the user

I Full description language

I From application description to “glue-code” production and
scheduling



xMML example

<model id="suspensionFlow">

<description>

Flow with a suspension of particles. The conentration

of particles affect locally the flow viscosity and the

particles are advected by the flow.

</description>

<submodel id="flow">

<spacescale dimension="2" dx="1 mm" lx="10 cm" ly="30 cm" />

<spacescale dt="1 ms" t="1 min" />

<ports>

<in id="concentration" operator="C" dt="1 ms" dx="1 mm" />

<out id="velocity" operator="Oi" dt="10 ms" dx="1 mm" />

</ports>

</submodel>



xMML example continued

<submodel id="advectionDiffusion">

<spacescale dimension="2" dx="1 mm" lx="10 cm" ly="30 cm" />

<spacescale dt="10 ms" t="1 min" />

<ports>

<in id="velocity" operator="C" dt="10 ms" dx="1 mm" />

<out id="concentration" operator="Oi" dt="10 ms" dx="1 mm" />

</ports>

</submodel>

<coupling from="flow.velocity" to="advectionDiffusion.velocity" />

<coupling from="advectionDiffusion.concentration" to="flow.concentration">

<filter kind="timeInterpolation" />

</coupling>

</model>



Execution graph



Multiscale APPlications on European e-infRastructures

From applications → MML → computing infrastructure

I Running tightly coupled Distributed Multiscale
Applications using several supercomputing platforms

I Deploy middleware implementing the CxA-MML-MUSCLE
approach on the e-Infrastructure (EGI, PRACE, DEISA)

http ://www.mapper-project.eu



Application portfolio

I Participants : UvA NL, UCL UK, UU UK, PSNC PL,
CYFRONET PL, LMU DE, UNIGE CH, CHALMERS SE,
MPG DE



Simulation of irrigation canals

Develop a simulation tools for the optimal management of
irrigation canals

supply demand demand demand
demand

demand

L. Lefèvre, E. Mendes et al. (ESISAR Valence, INP-Grenoble)



Control of canal operation

I Maintain the discharge Q at the downstream gate, for all
lateral demands Qp. Constraint are :

I Water height : hmin ≤ h ≤ hmax

I Gate opening : θmin ≤ θ ≤ θmax

I Speed of the command : θ̇min ≤ θ̇ ≤ θ̇max



Scale Separation Map and submodels

X2 [1Km]

spatial scale
Of

finit

Of
finit

Free surface 3D

X1[5m]

Δt1[0.1min] Δt2[10 min]

ΔX2 [2m]

ΔX1[1cm]

Gate(Free surface 3D)
Of

Shallow

water 2D
Shallow

water 1D

Free surface 3D

T1=T2 [10h]

Temporal scale
[10 min]

(Free surface 3D)

Of

finit

finit

Multiple instance of tightly coupled sub-
models

I Shallow water
equation : 1D and 2D

I Detailed 3D
free-surface model

I Transport and erosion
of sediments

I Gates : Q =
αO

√
hup − hdown

I spill-way,...



Submodels

h(x)

f2

f1

f0



3D, free surface



Coupling 1D SW models (Mohamed Ben Belgacem)



MAD tool (Cyfronet, PL)



Submodel (kernel) and interface to MUSCLE

SW1D can1;= new SW1D(L, dx, dt, width, 0.03d);

for (int j = 0; j < nbriteration; j++) {

can1.collision();

can1.propagation();

//Observation: Collects data to send to the Gate

info = new HashMap<String, Double>();

info.put("f1", can1.getf1(nx));

info.put("h", can1.getH()[nx]);

f_out.send(info);//send the Data to the Gate

// Boundary: receive the data from the Gate

double fin = f_in.receive();

can1.setf2(nx, fin);// update the distribution function

can1.bounceBack(); // boundary at the left end

}



MUSCLE Coupling script

# declare kernels

cxa.add_kernel(’SW1D1’, ’com.unige.irigcan.kernel.d1.SW1D_1B_kernel’)

cxa.add_kernel(’SW1D2’, ’com.unige.irigcan.kernel.d1.SW1D_2B_kernel’)

cxa.add_kernel(’SW1D3’, ’com.unige.irigcan.kernel.d1.SW1D_1B_kernel’)

cxa.add_kernel(’Gate’, ’com.unige.irigcan.junction.Gate_kernel’)

cxa.add_kernel(’Spill’, ’com.unige.irigcan.junction.Spill_kernel’)



MUSCLE Coupling script (continued)

# configure connection scheme

cs = cxa.cs

cs.attach(’SW1D1’ => ’Gate’) { tie(’f_out’, ’f1_in’)}

cs.attach(’SW1D2’ => ’Gate’) { tie(’f_out’, ’f2_in’)}

cs.attach(’Gate’ => ’SW1D1’) { tie(’f1_out’, ’f_in’)}

cs.attach(’Gate’ => ’SW1D2’) { tie(’f2_out’, ’f_in’)}

#

cs.attach(’SW1D2’ => ’Spill’) { tie(’f_out_X’, ’f1_in’)}

cs.attach(’SW1D3’ => ’Spill’) { tie(’f_out’, ’f2_in’)}

#

cs.attach(’Spill’ => ’SW1D2’) { tie(’f1_out’, ’f_in_X’)}

cs.attach(’Spill’ => ’SW1D3’) { tie(’f2_out’, ’f_in’)}

See simulation...



Thank you for your attention
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