

A Methodology for Multiscale-Multiscience modeling and simulations

Bastien Chopard

Computer Science Department University of Geneva, Switzerland

ICES workshop, Geneva, Nov. 22, 2011

Introduction

- Modeling and simulation are central to modern science
- There is a need to develop new and better numerical approaches
- For instance the Cellular Automata (CA) and Lattice Boltzmann (LB) approaches have been successful alternatives to standard computational methods

CA and LB methods

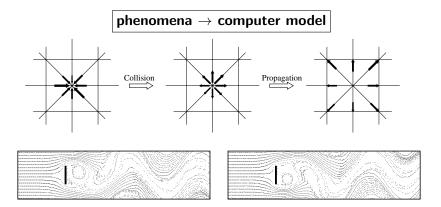
- a discrete mathematical abstraction of reality
- The macroscopic behavior depends very little on the details of the microscopic interactions.
- Only "symmetries" or conservation laws survive.
- Consider a fictitious world, particularly easy to simulate on a (parallel) computer with the desired macroscopic behavior.

From hydrodynamics PDE

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{
ho} \nabla \rho + \nu \nabla^2 \mathbf{u}$$

phenomena \rightarrow PDE \rightarrow discretization \rightarrow computer solution

...to virtual fluids

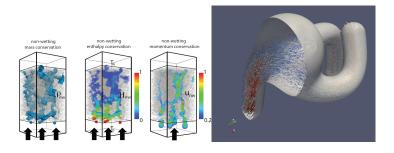


LB simulations

- Simple, flexible, intuitive, efficient
- Palabos software¹ (Jonas Latt)
 - Free, Open source software (http://www.lbmethod.org/palabos)
 - ▶ Python interface or full C++
 - complex multi-physics, complex data-structures
 - Offer a wide range of models, boundary conditions, dynamics
 - Can handle large scale parallel simulations
 - Automatic high performance parallelization. Scales well up to thousands of cores

^{1.} http://www.lbmethods.org/palabos

Examples of LB simulations



 Propose a modeling and simulation framework for multiscale, multisciences complex systems

- Propose a modeling and simulation framework for multiscale, multisciences complex systems
 - Theorectical concepts : Complex Automata (CxA)

- Propose a modeling and simulation framework for multiscale, multisciences complex systems
 - Theorectical concepts : Complex Automata (CxA)
 - Software environment : The MUSCLE library

- Propose a modeling and simulation framework for multiscale, multisciences complex systems
 - Theorectical concepts : Complex Automata (CxA)
 - Software environment : The MUSCLE library
 - Validation application : In-stent restenosis

- Propose a modeling and simulation framework for multiscale, multisciences complex systems
 - Theorectical concepts : Complex Automata (CxA)
 - Software environment : The MUSCLE library
 - Validation application : In-stent restenosis
 - A Multiscale Modeling Language : MML

- Propose a modeling and simulation framework for multiscale, multisciences complex systems
 - Theorectical concepts : Complex Automata (CxA)
 - Software environment : The MUSCLE library
 - Validation application : In-stent restenosis
 - A Multiscale Modeling Language : MML
- The follow up : the MAPPER EU project

The COAST Project

- A. Hoekstra, A. Caiazzo, E. Lorenz, U. Amsterdam (Netherlands)
- R. Hose, P. Lawford, D. Evans, J. Gunn, U. Sheffield (UK)
- B. Chopard, J-L. Falcone, B. Stahl, U. Geneva (Switzerland)
- M. Krafczyk, Y. Hegwald, TU Brauschweig (Germany)
- J. Bernsdorf, D. Wang, NEC (Germany)

Joris Borgdorf, U. Amsterdam (Netherlands)

Motivations

Very few methodological papers in the literature.

Motivations

- Very few methodological papers in the literature.
- Multiscale strategies are usually entangled with applications.

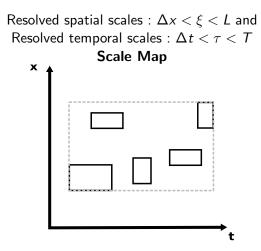
Motivations

- Very few methodological papers in the literature.
- Multiscale strategies are usually entangled with applications.
- Can we develop a framework that help the design and deployment of complex multiscale-multiscience applications?

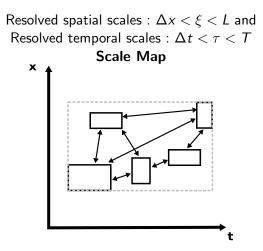
Let us consider a system of size *L* evolving over a time *T*. Computation with space and time discretization Δx and Δt

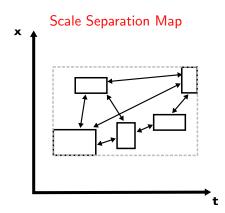


Let us consider a system of size *L* evolving over a time *T*. Computation with space and time discretization Δx and Δt



Let us consider a system of size *L* evolving over a time *T*. Computation with space and time discretization Δx and Δt



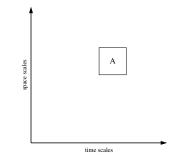


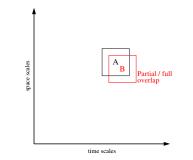
- Submodels
- Smart Conduits

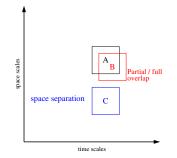
Complex Automata (CxA)

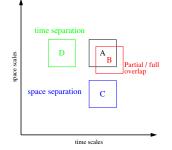
- ► A CxA is a set of coupled (single-scale) submodels
- Lattice Boltzmann (LB), cellular automata (CA) models and Finite Difference (FD) schemes, and also particle models, ...
- They can be decribed with the same generic execution loop
- Submodels should not know about the rest of the system : they are autonomous components
- Only the smart conduits know about the properties of the submodels they connect.

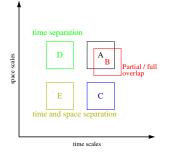
A. G. Hoekstra, A. Caiazzo, E. Lorenz, J.-L. Falcone, and B. Chopard. *Complex Automata : multi-scale Modeling with coupled Cellular Automata*, in Modelling Complex Systems by Cellular Automata, chapter 3, Springer Verlag, 2010.



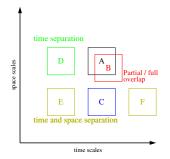






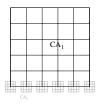


- The Scale Separation Map (SSM) specifies the relation between the sub-models in five regions :.
- There is more than the standard micro-macro relation and more than than the "bi-scale" modeling



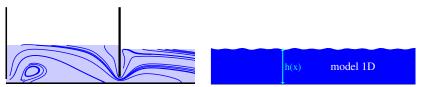
II. Relation between computational domains

single-Domain (sD)

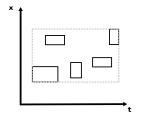


(Example : advection-diffusion, suspension flows)

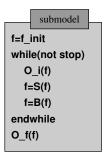
multi-Domain (mD)



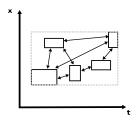
III Generic "Submodel Execution Loop"



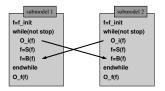
- *f_{init}* is for initialization
- S is for one iteration of the Solver
- B is to specify the Boundaries
- O_i is for Intermediate
 Observation
- O_f is for Final Observation

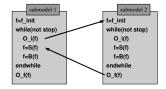


IV. Coupling Templates

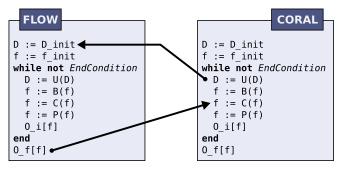


- One has several operators in the submodel execution loop
- O_i, O_f as origin
- f_{init} , B and S as possible destinations

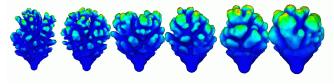




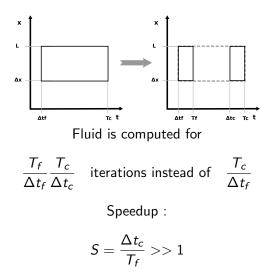
Example : Coral growth



Coral grows due to nutrient brought by water flow



Coupling Speedup : Coral growth



Classification of problems

- relation in the Scale Separation Map
- single-Domain (sD) or multi-Domain (mD) relation
- coupling templates

		ove	rlap	ME separation	
	ap	snow transport advection-diffusion 	Fluid-Structure Grid transition 	Forest-Savannah-Fire 	Coral Growth
	overlap	O_i to S	O_i to B	O_i to f_init O_f to S	O_i to f_init O_f to B
SPACE		single domain	multi domain	single domain	multi domain
SP/	_	Algae-Water	Wave propagation		Bio-Physics Tissue-Fluid
	separation				O_i to f_init O_f to B
	epai	O_i to S	O_i to B	Suspension	
	õ			O_i to f_init O_f to S	
		single domain	multi domain	single domain	multi domain

Relation between the scales separation and the coupling templates

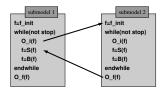
We consider two submodels, X and Y with **single-domain** (sD) relation

name	coupling	temporal scale relation
interact call realease dispatch	$\begin{array}{c} O_{i}^{X} \rightarrow S^{Y} \\ O_{i}^{X} \rightarrow f_{init}^{Y} \\ O_{f}^{Y} \rightarrow S^{X} \\ O_{f}^{X} \rightarrow f_{init}^{Y} \end{array}$	overlap X larger than Y Y smaller than X any

When the relation between computational domains is **multi-domain**, change $S \rightarrow B$

Thus, the relation in the SSM determines the workflow

CxA Execution Model



- Submodels are autonomous processes
- Asynchronous communication through the conduits :
 - Data is written to the conduit as soon as ready.
 - Submodels read the data they need from the conduits (wait if needed).
- Only local interactions are necessary : parallelization is possible and natural
- Propagation of the termination condition

Send-Receive through the conduits

Example of the Coral submodel :

```
while not EndConditions
    DomainConduit.send(D)
    f := B(f)
    velocityMap := VelocityConduit.receive()
    f := S(f,velocityMap)
    end
DomainConduit.stop()
myStop()
```

The COAST software environment : MUSCLE

- Jade (Java Agent based lightweight middleware) as a platform to build the coupling software.
- Allows us to couple submodels (and legacy codes in C, Fortran).
- A "Jade coordinator" is used to setup the system then goes away,
- Low overhead.
- Predefined parametrized conduits
- Public release in Jan. 2009²

2. http://muscle.berlios.de

Can we do math with this approach?

Mathematical formulation of couplings

CxA operators P and C can be used to express coupling strategies

- Time splitting
- Coarse graining
- Amplification
- ► ...

and estimate errors

Time splitting

Assume we have a sD problem with the following SEL

$$P_{\Delta t}C_{\Delta t} = P_{\Delta t}C_{\Delta t}^{(1)}C_{\Delta t}^{(2)}$$

Then if $C_{\Delta t}^{(1)}$ acts at a longer time scale than $C_{\Delta t}^{(2)}$ we may want to approximate

$$[P_{\Delta t}C_{\Delta t}]^M pprox P_{M\Delta t}C^{(1)}_{M\Delta t}[C^{(2)}_{\Delta t}]^M$$

Coarse graining

This strategy consists in expressing a sD problem as

$$[P_{\Delta x}C_{\Delta x}]^n\approx \Gamma^{-1}[P_{2\Delta x}C_{2\Delta x}]^{n/2}\Gamma$$

where $\boldsymbol{\Gamma}$ is a projection operator (implemented in the smart conduit)

Amplification

We consider a process acting at low intensity but for a long time, in a time periodic environment. For instance a growth process in a pulsatile flow.

We have two coupled (mD) processes which are iterated n >> 1 times

$$[P^{(1)}C^{(1)}]^n$$
 and $[P^{(2)}C^{(2)}(k)]^n$

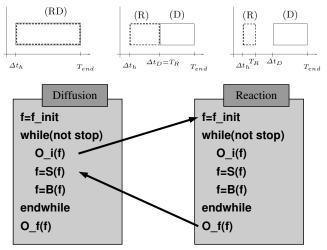
where k expresses the intensity of process $C^{(2)}$.

If the period of process $C^{(1)}$ is $m \ll n$, we can approximate the above evolution as

$$[P^{(1)}C^{(1)}]^m$$
 and $[P^{(2)}C^{(2)}(k')]^m$

with k' = (n/m)k, for a linear process.

Reaction-Diffusion with time splitting



$$\partial_t \rho = d\partial_{xx} \rho + \kappa (\rho_\lambda - \rho),$$
 (1)

We assume a fast reaction i.e. $\|\kappa\| \gg \|d\|$ (in some units).

The LB model in CxA language

$$f(t + \Delta t_R) = P[I + D(\tau_R) + R(\kappa)]f(t)$$
(2)

 $D(\tau_R)$ the diffusion collision operator at scale Δt_R , $R(\kappa)$ the reaction collision operator, I, the identity and P the propagation. It can be time-split as

$$f(t + \Delta t_D) = P[I + D(\tau_D)][I + R(\kappa)]^{\Delta t_D / \Delta t_R} f(t)$$
(3)

The error *E* of this time splitting can be computed analytically A. Caiazzo, J-L. Falcone, B. Chopard and A. G. Hoekstra, *Asymptotic analysis of Complex Automata models for reaction-diffusion systems*, Applied Numerical Mathematics 59 pp. 2023–2034 (2009)

Temporal scales

The time scales are such that

$$\Delta t_R < \tau_R = 1/\kappa \ll \Delta t_D < \tau_D = 1/(\lambda^2 d)$$

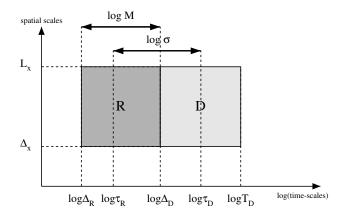
thus, the actual scale separation is

$$\sigma = \frac{\tau_D}{\tau_R} = \frac{\kappa}{\lambda^2 d}$$

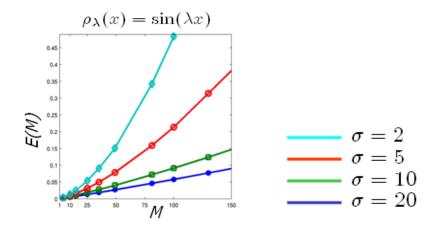
whereas, the enforced scale separation is

$$M = \frac{\Delta t_D}{\Delta t_R}$$

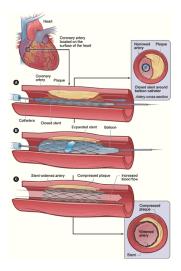
Scales separation



Time-splitting error versus scale separation

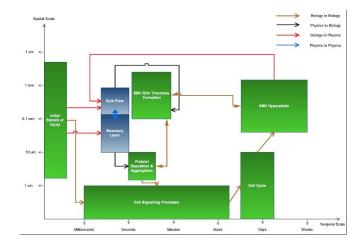


Biomedical application : in-stent restenosis



- Coronary heart disease (CHD) remains the most common cause of death in the UK, being responsible for approximately 105,000 deaths in 2004 (BHF Stats, 2006).
- In 2005, 94% of 70,142 UK procedures involved the deployment of a stent (BCIS Stats, 2006).

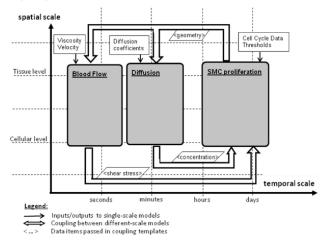
Restenosis : the full Scale Separation Map



Restenosis : Scale Separation Map

A 3-submodel simplification (time separation is achieved)

D Evans, PV Lawford, J Gunn, D Walker, DR Hose, RH Smallwood, B Chopard, M Krafczyk, J Bernsdorf, A Hoekstra. The Application of Multi-Scale Modelling to the Process of Development and Prevention of Stenosis in a Stented Coronary Artery. Phil. Trans. R. Soc. A 366, pp. 3343–3360, 2008



Wrapping things together in the software environement

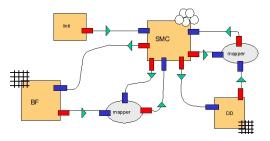
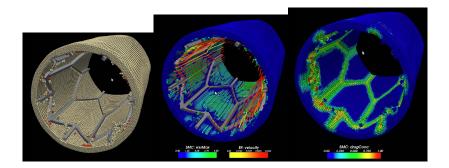


Figure 16: Example of Connection Scheme for a CxA coupling BF, SMC and DD (see technical deliverable 3.2). For each single scale model, it is indicated whether it is based on a lattice or on agent. Mappers are used to map different inputs onto the time dependent domain of cells.

Runs on a distributed infrastructure (MAPPER project) more than one output.

3D model



MML : a Multiscale Modeling Language

- the SSM turned out to be very powerful to design applications
- Formalize the CxA ideas into a language : high level representation of a complex multiscale application
- Allows scientists with different backgrounds and geographical locations to better co-develop a multiscale application
- Provide blueprints of a complex multiscale application that can be further augmented by other groups
- Standard for publication

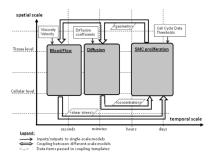
J-L Falcone, B. Chopard and A. Hoekstra, MML : towards a Multiscale Modeling Language,

Procedia Computer Science 1 :11, 819-826, 2010

Main ingredients

Sub-models

- Spatial and temporal scales
- Computational domain relation
- Coupling templates
- Conduits



We want to represent these features on a descriptive language

xMML

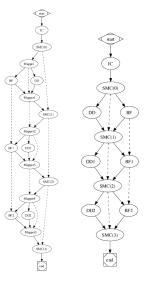
- XML-like language
- Easy grammar for the user
- Full description language
- From application description to "glue-code" production and scheduling

xMML example

```
<model id="suspensionFlow">
  <description>
  Flow with a suspension of particles. The conentration
  of particles affect locally the flow viscosity and the
  particles are advected by the flow.
  </description>
  <submodel id="flow">
    <spacescale dimension="2" dx="1 mm" lx="10 cm" ly="30 cm" />
    <spacescale dt="1 ms" t="1 mim" />
    <ports>
    <in id="concentration" operator="C" dt="1 ms" dx="1 mm" />
    </ports>
  </upre>
```

xMML example continued

Execution graph



(a) Complete data flow

(b) Simplified data flow

Multiscale APPlications on European e-infRastructures

From applications \rightarrow MML \rightarrow computing infrastructure

- Running tightly coupled Distributed Multiscale
 Applications using several supercomputing platforms
- Deploy middleware implementing the CxA-MML-MUSCLE approach on the e-Infrastructure (EGI, PRACE, DEISA)

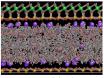
http://www.mapper-project.eu

Application portfolio

virtual physiological human

fusion

hydrology

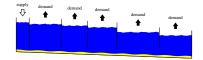


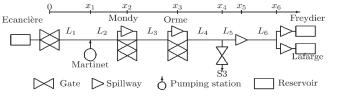
nano material science

 Participants : UvA NL, UCL UK, UU UK, PSNC PL, CYFRONET PL, LMU DE, UNIGE CH, CHALMERS SE, MPG DE

Simulation of irrigation canals

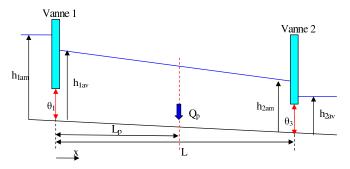
Develop a simulation tools for the optimal management of irrigation canals





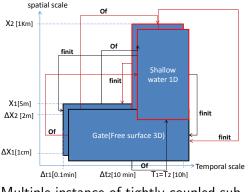
L. Lefèvre, E. Mendes et al. (ESISAR Valence, INP-Grenoble)

Control of canal operation



- Maintain the discharge Q at the downstream gate, for all lateral demands Q_p. Constraint are :
 - Water height : $h_{min} \leq h \leq h_{max}$
 - Gate opening : $\theta_{\min} \le \theta \le \theta_{\max}$
 - Speed of the command : $\dot{\theta}_{min} \leq \dot{\theta} \leq \dot{\theta}_{max}$

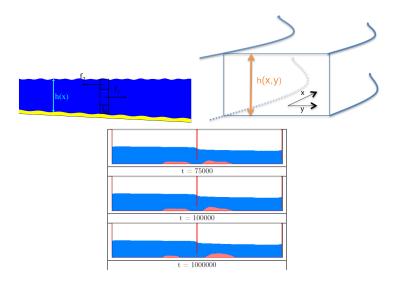
Scale Separation Map and submodels



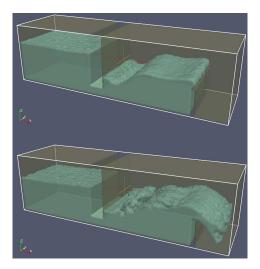
Multiple instance of tightly coupled submodels

- Shallow water equation : 1D and 2D
- Detailed 3D free-surface model
- Transport and erosion of sediments
- Gates : $Q = \alpha O \sqrt{h_{up} h_{down}}$
- spill-way,...

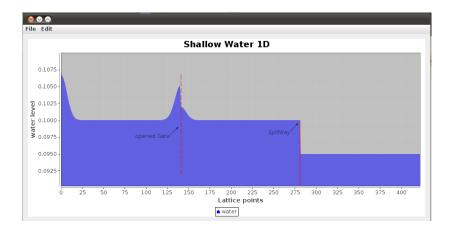
Submodels



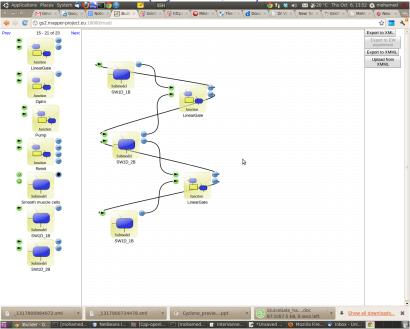
3D, free surface



Coupling 1D SW models (Mohamed Ben Belgacem)



MAD tool (Cyfronet, PL)



Submodel (kernel) and interface to MUSCLE

```
SWID can1;= new SWID(L, dx, dt, width, 0.03d);
for (int j = 0; j < nbriteration; j++) {
    can1.collision();
    can1.propagation();
//Observation: Collects data to send to the Gate
    info = new HashMa<String, Double>();
    info.put("f1", can1.getf1(nx));
    info.put("h", can1.getf1(nx));
    f_out.send(info);//send the Data to the Gate
    // Boundary: receive the data from the Gate
    double fin = f_in.receive();
    can1.setf2(nx, fin);// update the distribution function
    can1.bounceBack(); // boundary at the left end
    }
```

MUSCLE Coupling script

declare kernels cxa.add_kernel('SW1D1', 'com.unige.irigcan.kernel.d1.SW1D_1B_kernel') cxa.add_kernel('SW1D2', 'com.unige.irigcan.kernel.d1.SW1D_2B_kernel') cxa.add_kernel('SW1D3', 'com.unige.irigcan.kernel.d1.SW1D_1B_kernel') cxa.add_kernel('Gate', 'com.unige.irigcan.junction.Gate_kernel') cxa.add_kernel('Spill', 'com.unige.irigcan.junction.Spill_kernel')

MUSCLE Coupling script (continued)

```
# configure connection scheme
cs = cxa.cs
cs.attach('SWID1' => 'Gate') { tie('f_out', 'f1_in')}
cs.attach('SWID2' => 'Gate') { tie('f_out', 'f2_in')}
cs.attach('Gate' => 'SWID1') { tie('f1_out', 'f_in')}
#
cs.attach('SWID2' => 'SWID2') { tie('f_out_X', 'f1_in')}
#
cs.attach('SWID3' => 'SPII1') { tie('f_out_X', 'f1_in')}
#
cs.attach('SWID3' => 'SWID2') { tie('f1_out', 'f2_in')}
#
cs.attach('SPII1' => 'SWID2') { tie('f1_out', 'f1_in')}
#
```

See simulation...

Thank you for your attention