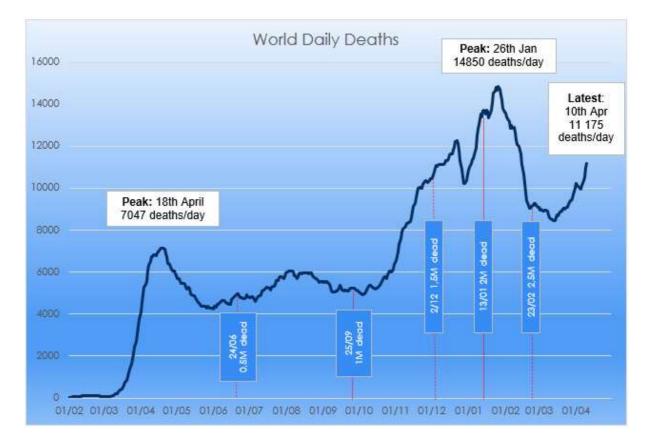
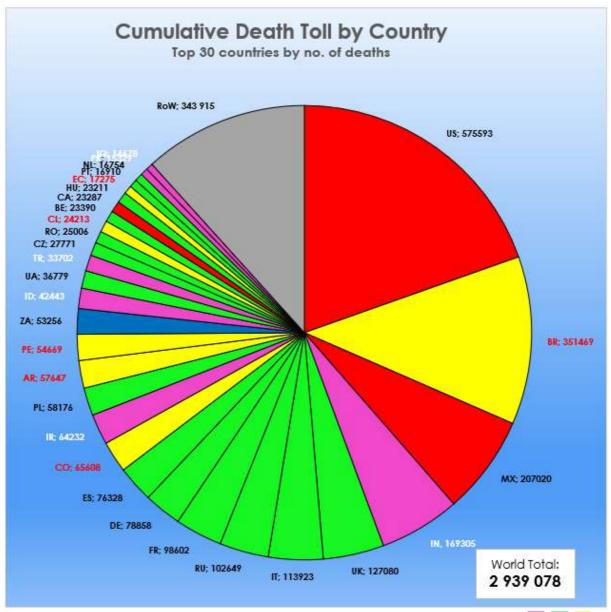
COVID-19 Biweekly Newsletter

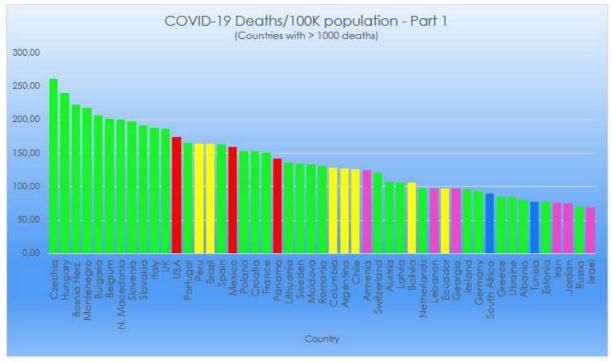

Issue N° 117, Sunday, 2021-04-11 © dr.david.lloydowen@gmail.com

<u>Contents</u>: Global overview / National comparisons / EU Test comparisons / US States focus / NYC&LI status / Today's images: Bird hide on Leigh Marshes / [Notes]

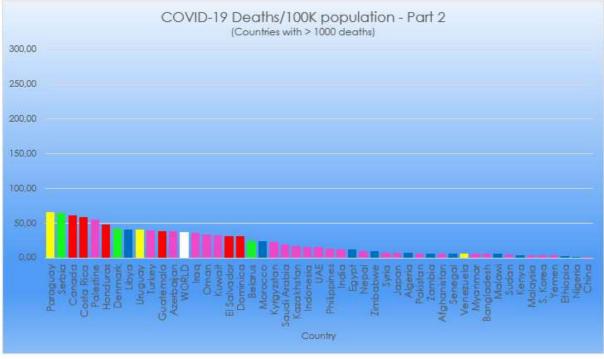

Global overview: [0]

Since last time:

- The global death rate (7-day moving mean) is again rising sharply.
- Global cumulative deaths will soon pass the 3 million mark.
- Yemen & Estonia (codes YE & EE) become the 96th & 97th countries to record >1000 COVID-19 deaths.



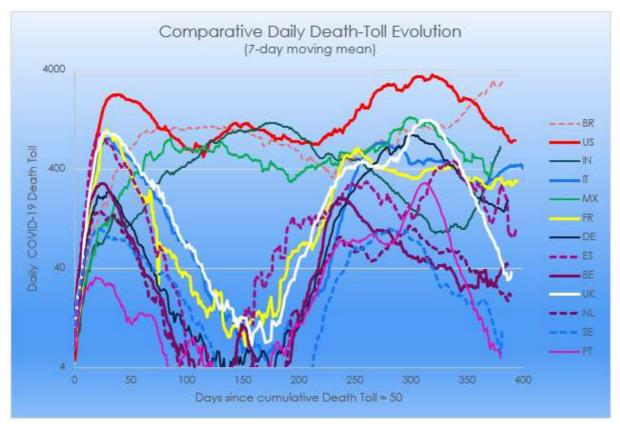
Cumulative death tolls for the top 30 countries [0]: N. America, S. America, Europe, Asia, & Africa Poland overtakes Argentina:



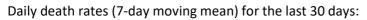
Lots of upward movement amongst the other >1000-death countries not shown above: PH, HR, PY, AZ, ET, PS, KE, VE & UY. (again)

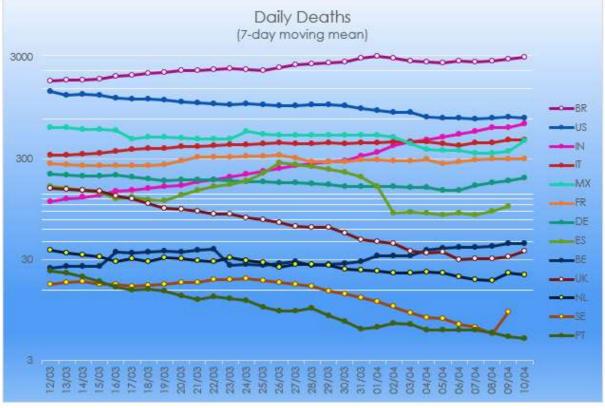
Per-capita death rates for all 97 countries with >1000 deaths: European countries dominate at the high end.

Moving left: MK, SK (again), IT, PE, BR, PL, LV, LB & EC.



The bottom half is more of a mixture:


Movement to the left in Part 2: PY, UY & BD.


National comparisons (selected countries)

Here is the evolution in daily deaths rates (7-day moving mean) since each country's "Day0" [1]:

(Log y scale!)

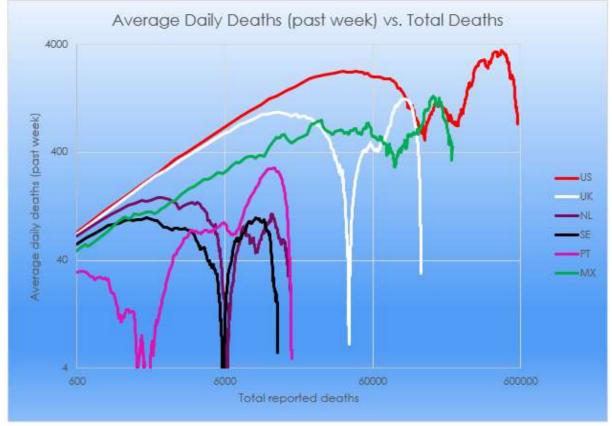
Comments apply to both of the above graphs:

- Rising sharply & consistently: BR & IN. Rising recently: DE & BE.
- Falling consistently: PT; and until just recently: US, UK & SE.
- The others are more or less static with IT, MX & FR remaining at a stubbornly high level.

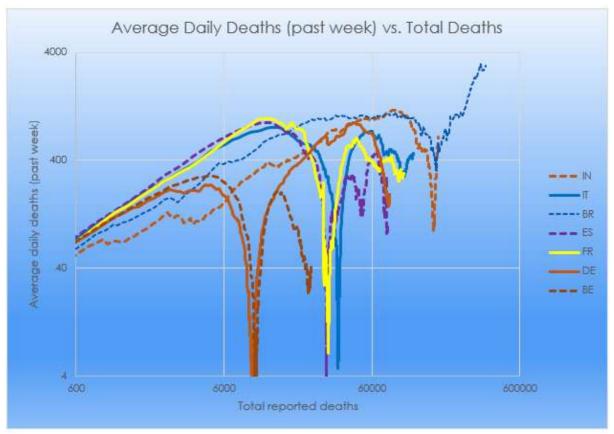
Country	1st death	Days since 1st death	"Day0"	Days since	Doubling time (7-day fits)			
	Istueau		Dayo	"Day0"	10 Apr	06 Apr	03 Apr	
IT	21 Feb	414	02 Mar	404	153 days	198 days	160 days	
FR	15 Feb	420	11 Mar	395	199 days	266 days	210 days	
ES	03 Mar	403	11 Mar	395	434 days	748 days	530 days	
US	29 Feb	406	13 Mar	393	451 days	551 days	408 days	
UK	05 Mar	401	16 Mar	390	2078 days	3404 days	2044 days	
NL	06 Mar	400	17 Mar	389	503 days	611 days	469 days	
DE	09 Mar	397	19 Mar	387	229 days	445 days	290 days	
BE	11 Mar	395	20 Mar	386	365 days	408 days	433 days	
SE	11 Mar	395	24 Mar	382	1245 days	1660 days	371 days	
BR	17 Mar	389	24 Mar	382	67 days	99 days	69 days	
PT	16 Mar	390	25 Mar	381	2293 days	1819 days	1838 days	
IN	12 Mar	394	26 Mar	380	164 days	212 days	239 days	
MX	19 Mar	387	03 Apr	372	280 days	525 days	309 days	
World	11 Jan	455	25 Jan	441	163 days	217 days	182 days	

<u>Tendencies: Comparison of time scales</u> [2, 3] Double digits, triple+shortening, triple, quadruple

- (compare 10/04 with 03/04 data [3])
- Mixed:
 - Improvement for some countries PT, UK, SE, NL & US
 - Deterioration for the rest.
- Poorest performance: BR.

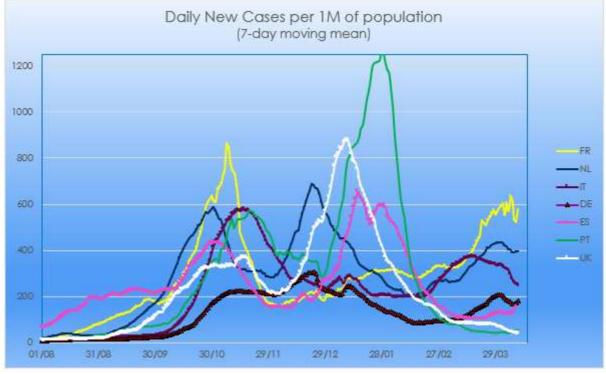

This is how doubling times have been evolving since mid-June: (Only "Sunday" values have been plotted [3].)

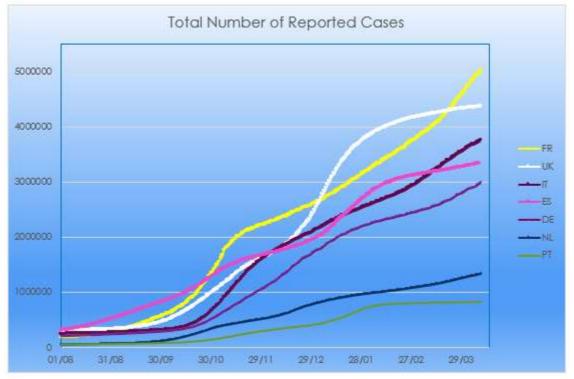
(Log y scale. Remember: Shorter doubling times equate to a faster evolution of the disease.) As I said above: mixed very results.


Predictive statistics [4]

To improve readability, I'm showing the same graph twice. First, the countries with the most convincing fall off:

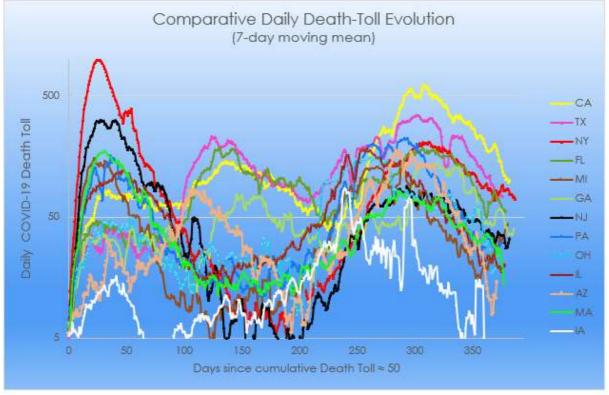
(log-log plot!)


The second for the other countries considered:

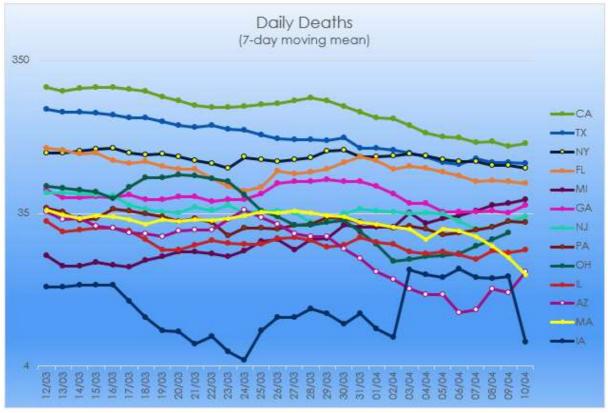

BR is still the only country currently showing no evidence whatsoever of dropping down.

EU Test Comparisons

Warning: National data on testing are not really comparable [6].

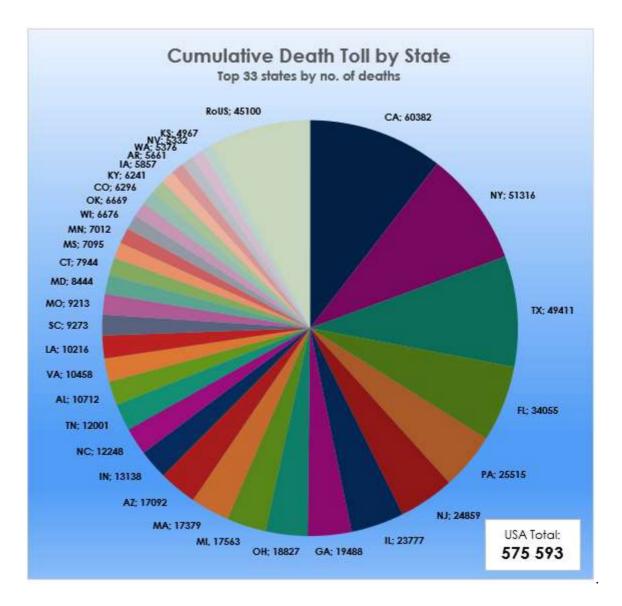


The rate of new cases in FR is starting to oscillate around 600/1M/day (while the daily death rate remains static).

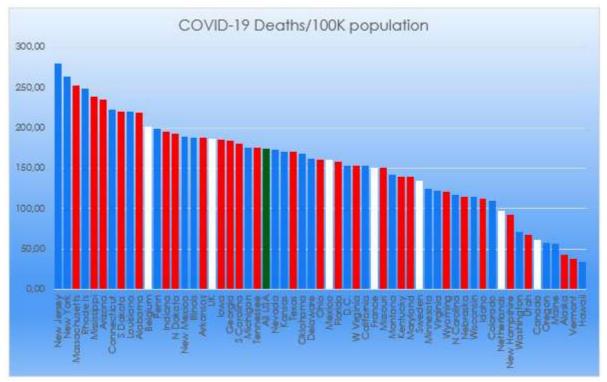

Here is the evolution in the total number of cases (not normalized to population):

<u>US States Focus</u> (selected states) Comparative Daily Death Toll evolution since each state's Day0 [1]:

Comparative Daily Death Toll evolution over the past 30 days:



(Log y scale!)


Comments apply to both of the above graphs:

- Death dates falling consistently for many states, esp. CA & TX.
 Only CA remains above 100 deaths/day (just).
- Recently, however, a few states are showing rises.
- IA reported an unusually high no. of deaths in a single day (68) a week ago.

Cumulative death toll for the top 33 US states: Oklahoma jumps up sharply, overtaking 7 states:

Per capita (for all 50 states):

Moving left: IL, MI, OK (overtaking 11 states), WV, MT, KY & NE.

State	1st death	Days since	"Day0"	Days since	Doubling time (7-day fits)			
	ist deali	1st death	Dayo	"Day0"	10 Apr	06 Apr	03 Apr	
AZ	20 Mar	386	04 Apr	371	650 days	2747 days	829 days	
CA	04 Mar	402	24 Mar	382	370 days	420 days	303 days	
FL	06 Mar	400	27 Mar	379	374 days	421 days	294 days	
GA	14 Mar	392	20 Mar	386	270 days	482 days	262 days	
IA	24 Mar	382	15 Apr	360	678 days	231 days	308 days	
IL	17 Mar	389	28 Mar	378	731 days	1047 days	764 days	
MA	20 Mar	386	29 Mar	377	795 days	476 days	415 days	
MI	18 Mar	388	25 Mar	381	239 days	351 days	340 days	
NJ	10 Mar	396	24 Mar	382	433 days	811 days	379 days	
NY	14 Mar	392	20 Mar	386	524 days	458 days	425 days	
OH	18 Mar	388	31 Mar	375	477 days	623 days	828 days	
PA	18 Mar	388	30 Mar	376	470 days	816 days	546 days	
TX	16 Mar	390	30 Mar	376	380 days	497 days	352 days	

Tendencies: Comparison of time scales [2, 3]

(compare 10/04 with 03/04 values [3]).

– Improvements for most states; deterioration for 5.

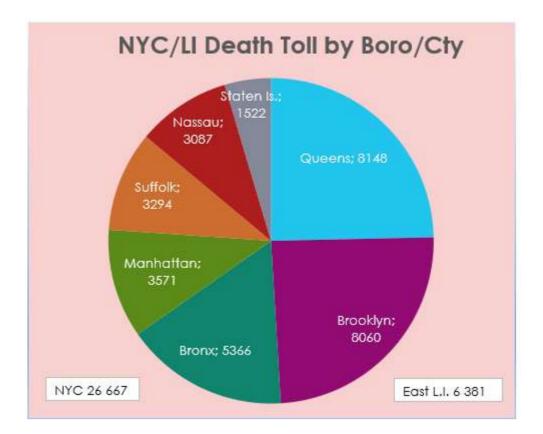
- Poorest performance: MI.

This is how doubling times have been evolving since mid-June: (Only "Sunday" values have been plotted [3].)

(Log plot! - Remember longer doubling times are preferable.)

This upward trend of all doubling times since the first week of the year continues, but is slowing. The doubling times for the 12 states shown remain bunched together.

The range is currently from 239 (MI) to 795 (MA). This gap has tightened slightly.


NYC/LI status

Average daily death rates for the 5 boroughs & 2 counties:

It really does look as if the peak has been passed for all boro's/counties, but the fall off is a lot slower than was the rise.

Cumulative death tolls:

Next update on Wednesday.

Keep well, keep safe, keep isolated – and I hope you're all getting vaccinated!

David

Today's image: Reconstructed bird hide overlooking Leigh Marshes in Essex:

It has a green roof and lots of nesting places for the local insects. Great views from the inside:

And you can see the remains of Hadleigh Castle in the distance, too!

Thanks to Allan for the photos!

Please keep sending me your images for this space...

Notes

[0] The national COVID-19 data are taken from the **worldometer** <u>website</u> which reproduces the data collected from Official Websites of Ministries of Health of other Governmental Institutions and Government authorities' social media accounts.

- Different countries use different criteria in recording COVID-19 deaths, often distinguishing between *probable* and *confirmed* cause of death.
 - Belgium appears to have the loosest criterion attributing any death to COVID-19 if there is any suspicion that COVID-19 could have been the cause.
 - The UK recently changed the definition: death occurring within 28 days of a positive test for COVID-19. (If the patient dies 29 days after the test, it wasn't officially caused by COVID-19.)
 - China has only reported a single COVID-19 death since 17th May 2020! This occurred on 14th January 2021.
- Some countries, notably Sweden & Spain, regularly update the entire set of historical data provided to the website. Other counties, e.g., UK & USA, do the same but more rarely.

All	World	CR	Costa Rica	IL	Israel	MW	Malawi	SD	Sudan
AE	UAE	CZ	Czechia	IN	India	MX	Mexico	SE	Sweden
AF	Afghanistan	DE	Germany	IQ	Iraq	MY	Malaysia	SI	Slovenia
AL	Albania	DK	Denmark	IR	Iran	NL	Netherlands	SK	Slovakia
AM	Armenia	DO	Dominican Rep.	П	Italy	NO	Norway	SN	Senegal
AR	Argentina	DZ	Algeria	JO	Jordan	NP	Nepal	SV	El Salvador
AT	Austria	EC	Ecuador	JP	Japan	OM	Oman	SY	Syria
AZ	Azerbaijan	EE	Estonia	KE	Kenya	PA	Panama	TN	Tunisia
BA	Bosnia Herzegovina	EG	Egypt	KG	Kyrgyzstan	PE	Peru	TR	Turkey
BD	Bangladesh	ES	Spain	KR	Rep. Of Korea	PH	Philippines	UA	Ukraine
BE	Belgium	ET	Ethiopia	KW	Kuwait	PK	Pakistan	UK	UK
BG	Bulgaria	FI	Finland	LB	Lebanon	PL	Poland	US	USA
BO	Bolivia	FR	France	LT	Lithuania	PS	Palestine	UY	Uruguay
BR	Brazil	GE	Georgia	LV	Latvia	PT	Portugal	VE	Venezuela
BY	Belarus	GR	Greece	LY	Libya	PY	Paraguay	YE	Yemen
CA	Canada	GT	Guatemala	MA	Morocco	RO	Romania	ZA	South Africa
CH	Switzerland	HR	Croatia	MD	Moldova	RoW	Rest of World	ZM	Zambia
CL	Chile	HU	Hungary	ME	Montenegro	RS	Serbia	ZW	Zimbabwe
CN	China	ID	Indonesia	MK	North Macedonia	RU	Russia		
CO	Columbia	IE	Ireland	MM	Myanmar	SA	Saudi Arabia		

US S	tates								
AL	Alabama	HI	Hawaii	ME	Maine	NJ	New Jersey	SD	South Dakota
AK	Alaska	IA	lowa	MI	Michigan	NM	New Mexico	TN	Tennessee
AR	Arkansas	ID	Idaho	MN	Minnesota	NV	Nevada	TX	Texas
AZ	Arizona	IL	Illinois	MO	Missouri	NY	New York	UT	Utah
CA	Califormia	IN	Indiana	MS	Mississippi	OH	Ohio	VA	Virginia
CO	Colorado	KS	Kansas	MT	Montana	OK	Oklahoma	VT	Vermont
СТ	Connecticut	KY	Kentucky	NC	North Carolina	OR	Oregon	WA	Washington
DE	Delaware	LA	Louisiana	ND	North Dakota	PA	Pennsylvania	WI	Wisconsin
FL	Florida	MA	Massachusetts	NE	Nebraska	RI	Rhode Island	WV	West Virginia
GA	Georgia	MD	Maryland	NH	New Hampshire	SC	South Carolina	WY	Wyoming

[1] For comparison purposes, the data of individual countries have been shifted horizontally so that a synchronization occurs at the same point on the horizontal (time) axis which I denote "Day0". Day0 has been chosen to be the date on which the cumulative number of deaths was closest to **50** for the country concerned.

[2] The doubling time is a characteristic of exponential growth. It is the period of time over which the number of cases double, and is an inverse measure of the gradient of the curve. A doubling time makes sense when the curve is close to an exponential, i.e., a straight line on a semi-logarithmic graph. For this reason. in order to follow the evolution in the number of cumulative deaths per country, I fit an exponential to the data at the end of the curve (7 days' data) and extract from this a "doubling time".

The doubling time means what it says: If the exponential tendency persists unchanged, the numbers of deaths at the end of the doubling time will be double the current number.

Example based on US data: On 29/08/2020 no. deaths was 188 900 and doubling time was 116 days. This implies no. deaths on 23/12/2020 (116 days later) will have doubled – to 377 800.

The actual number on that date was 339 422, which reveals that there was a decline in the exponential tendency – but not by that much.

Clearly, long doubling times are good; short ones are bad.

[3] Saw-tooth effect: Doubling times published in the Wednesday report (extracted from Wed-Tue datapoints) are systematically longer than doubling times published in the Sunday report (extracted from Sun-Sat datapoints). This is associated with weekend reporting delays.

[4] One of the characteristics of the exponential function is that the gradient (or rate of change), is proportional to the value of the function.

(For those who remember their calculus, the solution of df(t)/dt = k f(t) is $f(t) = e^{kt}$.)

By plotting the change (number of deaths in a given period) on the y-axis against the total number of deaths on the x-axis, an exponential gives a straight line on a log-log graph. When the mortality rate stops being exponential, the country curve plummets down from the main sequence.

The points represent values on a succession of days, the end point being yesterday. The more closely spaced are the points (days), the slower the evolution; the greater the distance between points, the faster the evolution.

To give a clearer meaning to the y-axis data, we plot the average no. of deaths in the past 7 days vs. the cumulative no. of deaths on the x-axis.

This analysis was proposed by **Dr Aatish Bhatia**. An animated version of this graph can be viewed on his <u>website</u>. (Use the panel on the right to configure for *Reported Deaths* and select the countries to be viewed.)

An entertaining video explaining this presentation of the data can be found <u>here</u>.

[5] The sources of the NYC & Long Island data are <u>not the same</u> as the one used for national data: Source for the 5 boroughs:

https://github.com/nychealth/coronavirus-data/blob/master/totals/by-boro.csv Source for Nassau & Suffolk counties:

https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html#states

[6] Testing policies vary widely & unpredictably both regionally and in time.

(The only reason I include these data is because they influence government policy for some govts.)